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ABSTRACT 

We show that in the constructible universe, the two usual definitions of 

Butler groups are equivalent for groups of arbitrarily large power. We also 

prove that Bext2(G, T) vanishes for every torsion-free group G and torsion 

group T. Furthermore, balanced subgroups of completely decomposable 

groups are Butler groups. These results have been known, under CH, only 

for groups of cardlnalitles ~ R~. 

1. In t roduc t ion  

All groups in the following are abelian. For standard terminology and notation 

we refer to the monograph [11]. 

Butler groups, both in the finite and infinite rank cases, have received much 

attention in the recent literature: they form a very attractive class of torsion-free 

groups, abundant with challenging problems. Butler [6] was the first to consider 

torsion-free groups B of finite rank, now called But ler  groups, which satisfy 

either of the following equivalent conditions: 
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(a) B is a pure subgroup of a completely decomposable group (of finite rank); 

(b) B is an epimorphic image of a completely decomposable group of finite 

rank. 

Groups (b) were also discovered by Bican [3]. Bican-Salce [5] noticed that (a) 

and (b) were equivalent to the condition that Bextl(B,T) = 0 for all torsion 

groups T (where Bext I denotes the group of all balanced extensions of T by B). 

This led to a generalization to torsion-free groups of infinite rank: a torsion-free 

group B (of any rank) is called a 

1. B r g r o u p  if Bextl(B, T) = 0 for all torsion groups T; 

2. B2-group if there is a continuous well-ordered ascending chain of pure 

subgroups, 

(1) 0=-Bo <Blq . . '<Ba  <.'.<B,.=-B----UBa 

with rank 1 factors (or, equivalently, with finite rank factors) such that, for 

each c~ < T, B~+I = Bo + Ca holds for some finite rank Butler group Go. 

Bican-Salce [5] proved that these definitions are equivalent for countable 

groups B and, in general, every B2-group is a Brgroup. A third class of groups 

has been introduced by Albrecht-Hill [1]: B is a 

3. Bs-group if B admits an Axiomo3 family of decent subgroups. 

(For definitions see Section 7.) It is an easy exercise to verify that every B3-group 

is a B2-group. Though the claim in [1] that the converse is also true is based on 

an incorrect proof, the equivalence of B2- and Ba-groups can be established (see 

(7.2) infra). 

There seems to be a consensus that the major open problems concerning infinite 

rank Butler groups are as follows: Is every Bl-group a Bz-group (and hence a 

Ba-group)? Is Bext2(G, T) = 0 for every torsion-free group G and torsion group 

T? 

For groups of cardinality R1, both questions have affirmative answers; see 

Dugas-Hill-Rangaswamy [8] and Albrecht-Hill [1], respectively. However, for 

groups of higher cardinality, the problems are undecidabh in ZFC. On one hand, 

assuming CH, Dugas-HiU-Rangaswamy [8] gave positive answers to the above 

questions for groups of cardinalities <_ R~. On the other hand, Dugas-Thom6 [9] 

have shown that the denial of CH leads to negative answers already at cardinality 

R2. 
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Our main objective is to break the barrier R0~ and to answer the posed questions 

for groups of arbitrary cardinality at least in the construetible universe L: 

THEOREM I: If  V = L, then every Bl-group is a B2-group (and hence a B3- 

group). 

THEOREM II: If V = L, then Bext2(G, T) = 0 for all torsion-free groups G and 

torsion groups T. 

Basically, our approach follows the path opened by the pioneering paper [8] 

by Dugas-Hill-Rangaswamy. The vehicle for obtaining a chain (1) required for 

the proof of being a B2-group was the construction of a chain of separative 

subgroups with rank one factors. However, this construction failed to work at 

cardinals which were successors to cardinals cofinal with w, so they could not pass 

the cardinal R,~. One is confronted with a new situation: in abelian group theory, 

the phenomenon of having R~ as a barrier has not occurred before, and therefore 

it should not be surprising that this question was not susceptible to treatment 

by any of the set theoretical principles used earlier. The new set theoretical 

hypothesis which we needed to pass cardinals cofinal with ~ is the Box Principle 

E]~ (known to be a consequence of V = L, see (3.1)). Actually, we will be able 

to establish not only the existence of a separative chain with rank one factors in 

any torsion-free group (see (4.2)), but also the existence of a richer collection: an 

Axiom-3 family of separative subgroups; cf. (7.3). 

It is noteworthy that the hypothesis V = L can be weakened in Theorems I 

and II; in fact, all the results can be derived by using only GCH and [3~ (both 

consequences of V = L). 

We take advantage of this opportunity to give a simplified, direct approach to 

the theory of Butler groups of arbitrary cardinality (some proofs in the paper 

Bican-Fuchs [4] on Bext run parallel to arguments here). The bulk of the proofs 

reflect a mixture of ideas in the literature, especially in [8], along with our own. 

Ir~ addition, we correc~ the mistake in [1]. 

2. Balanced and separative subgroups 

As usua l ,  XG(a), or simply x(a), will denote the characteristic of an element a 

in a given group G. A pure subgroup A of the torsion-free group G is said to 

be a balanced subgroup if every coset g + A (g E G) contains an element g + a 

(a E A) (called p rope r  wi th  respec t  to A) such that x(g + a) > x(g + z) for 
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each z 6 A. An exact sequence 0 --4 A --* G ---* C --* 0 is balanced-exact if the 

image of A in G is a balanced subgroup of G. Balanced-exactness of the last 

exact sequence is equivalent to the property that,  for every rank 1 torsion-free 

group J ,  every homomorphism J ---, C can be lifted to a map J ~ G. 

LEMMA 2.1: A pure subgroup A of a torsion-free group G is balanced in G if  

and only if, for every g 6 G and for every countable subset {a,*},*<., of A, there 

exists an a 6 A such that 

(2) x(a + an) >_ x(g + an) for every n < w. 

Proof." Let A be balanced in G and g E G. For some a E A, g - a is proper 

with respect to A, i.e. x(g - a) >_ x(g + x) for all x E A. But then x(a  + x) > 

min{x(a - g), x(g + x)} = x(g + x) for all z E A. Conversely, suppose that  

for every g E G and {an}n<,, C A there is an a E A satisfying (2). Then 

x(g  - a) > x (g  + a,*) for each a,*. If the set is chosen so as to satisfy 

Xa/A(g + A) = Un x(g + a,*), then evidently XA(g -- a) > Xa/A(g + A), i.e. g - a 

is proper with respect to A. | 

For the next lemma, see [8, Observation 5.3]. 

LEMMA 2.2: Let 0 = Ao < A1 < " .  < Av < ... (v < A) be a (not necessarily 

conthauous) well-ordered ascending chain of balanced subgroups of the torsion- 

free group G. //'cfA > wl, then A = Uv A~ is again ba/anced in G. 

Proof.." Given g E G, there exists a countable subset {an},,<., of A such that  

XG/A(g + A) = Un x(g + an). ha view of cfA > wl, there is an index p < A 

with {a,*}n<., C At`. The balancedness of At` implies the existence of an element 

at, 6 At` such that  x(g + at`) = XG/A~(g + At`) > U,* x(g + an) = XG/A(g + A). 
| 

We can improve on an important lemma by Dugas-Hill-Rangaswamy [8, 

Lemma 5.2] that is required later on. The proof is reminiscent of their argu- 

ment. 

LEMMA 2.3: Let A and Hm(rn < w) be pure subgroups of the torsion-free group 

G (Ho = O) such that Hm, A + Hm are balanced in G for all m < w. Given a 

subgroup C of A, there exists a subgroup B of A such that 

(i) c <_ B <_ A; 

(ii) [B[ < [C[~*; 
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(iii) B + H,, is balanced in G for each m < w. 

Proof: Ignoring a trivial case, assume ~ = [C[ ~0 _> 2 a0. Follow the proof in [8] 

to obtain a balanced subgroup B0 of A of cardinality <_ ~ which contains C (it is 

simpler to use our (2.1) than the argument with hyperbalanced subgroups in [8]). 

Embed B0 in a subgroup B1 with [BI[ _< [B0[ R~ _< ~ such that (B1 + H1)/H1 is 

balanced in G/H1. Then the balancedness of H1 in G guarantees that B1 + H1 

will be balanced in G. Continue in this way to obtain an ascending chain of 

subgroups B,, (n < w) of cardinalities _< tr with (B,  + H , ) / H ,  balanced in 

G/H,.  Let Bw be the union of {B,[ n < w}; thus [B~[ < to. Define B~ for 

a < wl by transfinite recursion as follows. If subgroups Bg of cardinalities < ir 

have been defined for all fl < a, and if a is a limit ordinal, then let B~ be the 

union of t heB~  with fl < a. I f a  = ~ / + n + l  (7 limit ordinal a n d n  < w), 

then embed B-~+n in a subgroup Ba = B-y+n+l of cardinality _< tr such that 

(B,~ + Hn)/H.  is balanced in G/Hn. This B~ + H ,  will then be balanced in 

G. From (2.2) we conclude that the union B of all these Ba (a < wl) satisfies 

(i)-(iii). $ 

An immediate consequence is: 

COROLLARY 2.4: A torsion-free group that contains no balanced subgroups other 

than the trivial ones mus~ have cardinality <_ 2 ~~ . | 

A pure subgroup A of a torsion-free group G is called separa t ive  if for each 

g �9 G there is a countable subset {a, I n < w} C A such that {x(g + a,)[ n < w} 

is a cofinal subset in the set {x(g + a)[ a �9 A}. (This concept was introduced by 

P. Hin under the name 'separable' and used extensively in [1] and [7]-[8].) The 

following properties are well-known: 

Lv.MMA 2.5: 

(a) If A is a separative subgroup of G and A <_ B <_ G with B /A  countable, 

then B is likewise separative in G. 

(b) The up./on of a countable ascending chain of separative subgroups is again 

separative. | 

The following concept has been introduced in [8]. Define a B~ of 

a torsion-free group G to be a balanced subgroup of G. If for some a < wl, 

Ba-subgroups of G have been defined, then define Ba+Lsubgroups to be those 

subgroups of G which can be obtained as unions of countable ascending chains 
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of Ba-subgroups. If a < wl is a limit ordinal, then Ba-subgroups are all the 

B~-subgroups for fl < a. Finally, a Boo-subgroup of G is a subgroup which is 

a Ba-subgroup for some a < wl. We have: 

LEMMA 2.6 [8, LEMMA 5.5]: 

(a) The class of B~176 is dosed under taking unions of countable 

chains. 

(b) If  C is a B~-subgroup of B and B is balanced in G, then C is a B ~ 

subgroup of G. 

(c) Boo-subgroups of G are separative in G. | 

3. The key l emma 

As pointed out in the Introduction, the difficulty in establishing the existence of 

a sufficient supply of separative subgroups in torsion-free groups of cardinality 

beyond Rw lies in passing from a cardinal cofinal with w to the next cardinal. We 

focus our attention on this case, as this is the key to answer fully the questions 

raised in the Introduction for groups of arbitrary cardinalities. 

Let ), be a singular cardinal. Jensen [16] proved that the following "Box Prin- 

ciple" holds in L. 

[7~ There exists a family of sets, Cv, for limit ordinals v < )~+ such that  

(i) C~ is a cub (i.e. closed and unbounded) in v; 

(ii) the order type of Cv is < )4 

(iii) coherence property: if p is a limit point in Cv, then C~, = Cu N p. 

If cf)~ = w, there is a countable properly ascending chain of regular cardinals 
R0 ~n(n < w) such that  U ~n = )~. In particular, we have )~s0 = )~+ and ~n = ~,~ 

for all n. (Note that GCH implies that ~;s0 = ~ whenever cf~ > w and ~s0 = ~+ 

if cf~ = w; cf. Jech [15, p.49].) 

Here is the crucial, but rather technical lemma in whose proof we use both 

GCH and [:3~. 

LEMMA 3.1 (V = L): Let G be a torsion-ieree group, A and Hm (m < w) pure 

subgroups of G such that Jim and A + Hm are balanced in G (Ho = 0). Suppose 

that [A[ = A + where dA = w. There are pure subgroups Aa (a < A +) in A, pure 

subgroups A~ (n < w) in each A~, and in case cfa = w, pure subgroups A~ k 

(k < w) of A~ such that 
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for a///3 < a < A +, A# <_ An; Aa = U~<a A/~ f f  a is a limit ordina/; 

A = Uo<x+ A~; 
(b) for every n < w, A~ < A~ +~ and A~ = U~<~ A~ for each a; 

(c) f i e f s  = w, A~ = U~<~ A~ k where A~ ~ < An~ ~+' for every k < w; 

(d) Ia2l = x .  (and hence IAal = A) for each ~, n; 

(e) /f era ~ w, then A~ + Hm is balanced in G for MI m, n < w; ff era = w, 

then for each m, n, k < w, A~ k + Hm is balanced in G; 

(f) ff a =/3 + 1, then in case el/3 ~ w, A]  + A~ + H, ,  is balanced in G/'or a// 

n, k, m < w; while in case el/3 = w, A~ + A~ t + H,~ is bManced in G for MI 

n, k, I, m < w. 

Proof." To facilitate induction, we will require that, in addition to (a)-(f), the 

following conditions be also satisfied by the subgroups to be constructed. A -- 

{aa[ a < A + } will denote a well-ordering of the dements of A. 

(i) For every/3 < a < A +, A~ _< A~ if n is large enough; 

(ii) if a =/3 + 1, then a~ E A~, and for every n, A~ _< A~; 

(iii) if a =/3 + 1 and if fl is a limit ordinal such that the order type of C~ is 

_> ~;n, then A~ = A~; 

(iv) if/3 is a limit point of Ca, then A~+ x _< A~ for each n; 

(v) if/3 is a limit point of Ca and if the order type of C~ is _> ten, then A~ = A~; 

(vi) if cfa = w and if the order type of Ca is _> ~;n, then A~ _< A~ ~ for all h > n. 

The subgroups Aa, A~ (as well as A~ k for cfa = w) will be constructed by 

transfinite induction on ol. Four cases are to be distinguished according as oc = 0. 

ot is a successor ordinal, or a is a limit ordinal such that the set of limit points 

in Ca is bounded resp. unbounded in a. 

CASE 1: a = 0. (2.3) allows US to define, by induction on n, subgroups A~ 

such that A~ '-I < A~', IA~'[ = x,, and, in addition, the subgroups A~' + H,,, are 

balanced in G, for each n, m < w. Finally, we set A0 -- Un<~ A~. With this 

choice, conditions (b), (d) and (e) are satisfied for a = 0, the rest are vacuous. 

CASE 2: ot = fl + I. If/3 happens to be a limit ordinal, then let the index t be 

minimal such that the order type of Cp is < xt; such a t exists in view of []x(ii). 

Otherwise let t = 0. 

For n < t, set A~ = A~. Then all of A~ + Hm will be balanced in G 

(m < w) whenever cf/3 ~ w. If cf/3 -- w, then the order type of Cp must be 
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> Ion. Let 6 be the tenth member of C a. By induction hypothesis, A~ = A~ and 

A~ + H,n is balanced for all m < w, because el6 = ten > w. 

For n > t, define A~, via induction as follows. Let {Bil j < ~o} stand for 

the set { H ~ , A ~  + Hm[ n , m  < w} or for the set {Hm,A~ I + H~[ l , n , m  < w} of 

balanced subgroups of G according as el/3 ~ w or el/3 = w. Using (2.3) we can 

choose A~, to be a balanced subgroup of G such that (1) an  an-1  ~a '  "~" and a a are 

all contained in An~; (2) IA"~I = ~n; (3) for all j < w, the subgroups An~ + Bj are 

balanced in G. Finally, set Ar = I.Jn<w A~,. 

Conditions (a)-(e) are evidently satisfied. (f) requires proof only for cffl = 

w, in which case the balancedness of A~ + A~ t + H= is assured by (v): A~ <_ A~ ~ 

for all h > n. (i)-(iii) are trivial consequences of our choice, while (iv)-(vi) are 

vacuously true. 

CASE 3: a is a limit ordinal and the set of limit points in C~ is bounded in ~. 

In this case [2x(i) implies that the order type of C~ is of the form 6 + w with 6 

either 0 or a limit ordinal. Hence cfa = w. Since Ca is closed in a,  either C~ has 

no limit points at all or has a last limit point, say y (which is clearly the 6th limit 

point in C~). Choose a sequence fl0 < fll < "'" < fli < "'" of successor ordinals 

with supremum oq without loss of generality, we may put fl0 = 5 + 1 whenever 6 

exists. 

Define a strictly increasing sequence of non-negative integers ni as follows. 

no is the smallest integer t satisfying 6 < ~;~. If hi-1 has been chosen for some 

i >_ 1, then let ni be the smallest integer > ni-1 for which A~i -< Anat holds for 

all j < i and all integers n > hi; such an ni exists because fli satisfies (i), i.e. 

Anat - < Anat for large enough n. Once the sequence {nil i < w} has been defined, 

we can set 

A~ = A~i if ni < n < ni+l, 

and obviously, A~ = [Jn<~ An~ �9 Finally, in case cfa = r let A~ k = A~ for each 

k < w .  

To verify (a) for a,  pick a fl < a. There is an index i such that fl < fli. 

Since A a < An, by induction hypothesis, it suffices to show Aa, < A,~. Let 

z E Aa~ i.e. z E A n for somen .  There is an i n d e x j  with n < nj where 
' at  

without loss of generality i < j can be assumed. By the definition of ni ,  we have 
ni A~ < A"a~ = A~ i < A, .  But A~, < An,,  so z E A~. From the definition it is 

clear that  A,, < [..Ja<,, An, thus A~ = [-Ja<~ Aa, indeed. 
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Turning to (b), for a given n, let i be the minimal index such that  n + 1 
n = A n + l  ni+l. If here we have strict inequality, then A a = A~, and A~, +1 #, , so 

we have A~ < A~ +1. If n + 1 = ni+l, then by the choice of ni+l,  we have 

A,,+I < ~,,+1 thus " < A "+1 < A "+1 = A~, +1. ai  __ .r~a{+l , A,~ - -  Aa, _ a ,  - a , + l  

(c) for cfa  = w is evident by the choice of the A~ k, and so is (d) in view of 

A2 = A"a, for some i < ta. 

(e) is satisfied, since fli is a successor ordinal, and therefore A,~ + H,,, = 

A" a, + H, ,  is a balanced subgroup for each n, m < w. (f) is meaningless in this 

case .  

Of conditions (i)-(vi), only (i) and (iv)-(vi) are meaningful in Case 3. First 

consider (i). If/~ < a,  there is an index i such that ~ </3i. Since for large enough 

integers n, A~ _< A"a, holds, it suffices to prove A"a, - < Aa" for large n. But for 

n _> ni we have A~ = A naj for nj _< n < nj+l with j >_ i. By the definition of nj,  

nj _< n implies A~, -< Ana~ = Aa" 

Next concentrate on (iv). Let fl be a limit point of Ca. Thus ~ < r/, and 

either ~ = t /o r /~  �9 Ca f'l r / =  Cr because of lqx(iii). Recall that  by agreement 

~/0 = 7 /+1 ,  so for every n we have A n < An~ ( i f n  < hi ,  then A~, = A n a0 - ao' 
_ _  7 t  otherwise nj < n < nj+l for some j > 1, thus A~ - Aar ; by the definition of nj,  

A"a0 < Aai" ). Therefore, if ~ = ,7, then A~+ 1 < A~ for all n. On the other hand, 

if ~ < 7/, then ~ is a limit point of C~ (= Ca f3 t/), so by the induction hypothesis 
n n 11 for T/, A~+: < A a for each n. We conclude that A~+ 1 < A~ < A~+: < A a as 

desired. 

In order to check (v), recall that t was chosen to be minimal satisfying 

6 < tot and T/is the 8th point of C,,. Hence C, has order type 6. If/~ is a limit 

point of C~ and the order type of C a is > tr then the order type of Ca f3/~ is 

n (note that < t i m p l i e s n < n 0 < n l ) .  < let, i.e. n < t. Iff l  = % then A~ = A,+ 1 n 

From (iii) for r /+  1, we conclude that A,+ln = A~n ( tCt_l  _< 6), thus A~ n = A~. " If 
r l  n n < 7/, then ~ is a limit point of C,.  By (v) for T/we have A~ = A~ = A~+I = Aa. 

Finally, to prove (vi) note that A,~ is balanced and A~" < A~ for h > n. 

CASE 4: a is a limit ordinal and the set Da of limit points in Ca is unbounded in 

a. We now define An~ = I..JaED,: ' A~+ 1 and Aa = [.J,<,~ A~. If cfa = w, then let 

fl;, �9 Da(k  < w) be a cofinal ascending chain in tr such that the order type of Ca, 
_ _  h is > nt-~ (no restriction on the choice of/~0 in ease t = 0), and set A~ n~ - Aa~+I. 

Observe that if 3' < /~  in D,~, then by virtue of (v) 7 is a limit point of Ca, so 

A.~+~ < A~ _< A~+l. 
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(a) is obvious from A~, = U#eD~ A~+I. (b) follows from the inclusion A~ = 

UpeD, A~+I --  < U ~ e D .  ~'~+IA"+I = A~+I which is a consequence of A~+ 1 -< An+l'*#+l for 

all ~ < a. For cfa = w, (c) is satisfied in view of (iv) by the choice of the A~ k. 

To prove (d), again choose t to be minimal such that the order type of Ca 

is < t~t. Then [D,~[ < tot holds true. Thus for n > t, A~ = U#eD,  A~+I is 

the union of at most tot sets, each of cardinality to,,. Consequently, in this case 

[A~,[ < to,. If n < t, then the order type of Ca is > Jr and A~ is the union 

of more than ten sets, but  we shall show that most of these sets are equal. The 

~,,th member fl of Ca is clearly a limit point of Ca, so fl E Da. The order type 

of D~ is exactly ~r We claim that A~ = A~+ 1 (which is by (iii) equal to A~). 

Every 3' (7 < fl ,7 �9 D~) is a limit point of C~, so A.~+I < A~ for all n. If 

7 �9 Da and 7 > ~, then ~ is a limit point of C-~, so (v) applied to fl, 7 implies 

A. t = A~ = A" n fl+l" The order type of C- t being > to., (iii) is applicable, whence 
n n n A~ = A.t+l, and we obtain A.t+ 1 = A~+ 1. Thus A~ - -  as the union of equal sets 

A.~+ I = A~+ 1 - -  has cardinality [A~+ 11 = ~:,,- 

Next we prove (e). For each n, m < w, A~+ 1 + Hm is a balanced subgroup 

in G, so A~, + Hm is the union of an ascending chain of balanced subgroups. If 

cfa > w, then A,~ + H,,, is balanced. If cfa  = w, then the subgroups A2 k + H,,, = 

A" fl, ,+l "4- Hm are balanced in G. 

(f), (ii) and (iii) are vacuously satisfied. To see that (i) holds, note that 

if 7 < a and if ~ �9 D~, is chosen such that 7 < ~, then for large n we have 

A.~ < A~+~ < A~. (iv) follows from the observation that if fl is a limit point of 

C ~  i.e. if fl �9 Da,  then by definition A~+~ < A~. In order to verify (v), argue 

that if ~ is a limit point of Ca and the order type of C~ is _> to,, then the proof 

of (d) shows that A~ = A~+ 1 which is equal to A~. 

Finally, to check (vi), assume cfa = w. If the order type of Ca is > ~, ,  

then necesssarily n < t. Let ~ be the ~r member of Ca; then by (v) A~ = A#. 

Evidently, fl < ~0. Since both fl and fl0 are limit points of Ca, we infer that fl is 

a limit point of C~0 , so the inductive hypothesis of (v) for fl0 implies A" = 

By (iii), A~0 = A~0+, , so by (b) for h > n we have A~" = A~ = A~0 = A~0+, _< 
A h h0 #0+1 = A~ . 

This completes the proof of the lemma. | 

Remark: From the proof it is clear that (by changing the well-ordering of the 

elements of A) we may assume that for any fixed ~, given An, the subgroup Aa+l 
can be changed so as to contain any prescribed countable set of elements of A. 
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4. S e p a r a t i v e  chains  

We utilize (3.1) in order to prove the main result (4.2) on filtrations of torsion-free 

groups. To begin with, we prove an auxiliary 1emma. 

LEMMA 4.1: Assuming V = L, let G be a torsion-free group, and A and Hm 

(m < w) subgroups of G such that H,,, and A + H,, (m < w) are balanced/n 

G (Ho = 0). If IAI = ~ > R,, then there is a continuous well-ordered ascending 

chain 

(3) 0=Ao<A~<...<A,,<... (a<~) 

of pure subgroups of A such that 

(a) U < As = A; 
(b) IAsl < ~ for  all ~ < ~; 

(c) for each m and a, As + Hm is a B~176 in G; 

(d) A~+l/As is of rank _< •1 for each a <f tO. 

Proof." If ~ -- R1, there is nothing to prove, so assume ~ > R1. In the transfinite 

induction, we distinguish two cases a~cording as ~ = A + with cfA = w or not. 

CASE 1: ~ is any cardinal, not of the form ~ = A + with cf)~ = w. Manifestly, 

there is a chain (3) satisfying (a) and (b). GCH and the hypothesis on ,~ imply 

that if [A~[ < ,~, then also [A~0[ < ~. Applying (2.3), a standard back-and-forth 

argument permits us to change this chain by dropping terms so as to preserve 

(a) and (b), and to make A~ + Hm (m < w) into balanced subgroups in G for 

cfa ~ w, and Bl-subgroups for cfa = w. We want to refine this chain to satisfy 

all the conditions by inserting subgroups between each adjacent As and As+l. 

If cfa r w, then apply the induction hypothesis to the balanced subgroup 

A~+l (which has cardinality # < ~) in the role of A, and to the subgroups 

Aa + Hm (m < w) in the role of Hm (m < w). Thus we conclude that there 

exists a continuous well-ordered ascending chain of subgroups Ba (a < p) of G 

(B0 = 0) with union A~+l such that for all a < p, m < w, B~ + A~ + Arm 

are Boo-subgroups of G, and B~+I/B~ is of rank _< R1 for each a < #. Set 

Bs~ = B~ + A~ for a < p. These are evidently B~176 of G such that 

Bs~, + H,, are all Boo-subgroups of G. This leads us to a continuous well-ordered 

ascending chain of Boo-subgroups 

A,~ = Boo <_ B,~I <_." <_ Bsa <_ "" < As+1 
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where B ~ + I / B ~  has rank at most the rank of Bo+I/B~ which is <_ R1 for each 

a ~ p .  

If era = w, then write A~ = U,<~, A~n with ordinals a ,  such that sup ~,~ = 

a and clan r w. Again, we apply the induction hypothesis to the balanced 

subgroup Aa+l of cardinality p < ~ (in place of A) and to the balanced subgroups 

A~n + Hm (in place of the Hm) to conclude that there exists a continuous well- 

ordered ascending chain of subgroups Ba (a < #) of G (B0 = 0) with union A~+I 

such that B~ + A~, + H,n are all B~176 of G and B~+I/Br is of rank 

_< R1 for each a </~ and n, m < w. As before, we set B~, = B~ + A~ for a < p 

in order to obtain a chain between A~ and A~+1 as desired. 

CASE 2: ~ = A + where cfA = w. Appeal to (3.1) with A = G to conclude the 

existence of pure subgroups Aa, A~ (a < A +, n < w), and in case cfa = w, pure 

subgroups A~ k (k <: w) satisfying conditions (a)-(f) of (3.1). If (3) is the chain of 

these A,~, then conditions (a)-(c) above are evidently satisfied. To refine the chain 

between A~ and A~+I, we proceed as follows. For each n < w apply the induction 

hypothesis to the balanced subgroup A~+ 1 of cardinality A (playing the role of 
A n-1 ~) A) and to the countable set of balanced subgroups A~ + ~+1 + Hm (n, m < 

n--1 or A~ + A~+~ + H,n (n, k, m < w) according as cfa ~ w or cfa = w (playing the 

roles of Hm). Note that condition (f) in (3.1) guarantees that all these subgroups 

are balanced in G. We obtain a continuous well-ordered ascending chain of Boo- 

subgroups B~ of G (B~ = 0) with union A,~+I such that the rank of B~+I/B' ~ 

is < R1. These countably many chains can be merged into a single chain by 
n--1 replacing B~ by B~ + Aa+ 1 and letting the n + 1st chain follow the nth chain. 

The combined chain clearly has Aa+l for its union such that the sum of every 

member of this chain with any of the indicated balanced subgroups is a Boo- 

subgroup of G. This chain can now be handled just as in Case 1 to intercalate a 

chain of Boo-subgroups B ~  between A~ and A~+I. In this way, we are led to a 

chain between Aa and A~+t with the desired properties. | 

We are now in a position to verify the crucial result which enables us to 

pass the present barrier: the cardinal R~. 

THEOREM 4.2: Assume V = L. Let G be a torsion-flee group and le~ ~ denote 

its rank. There exists a continuous well-ordered ascending chain 

(4) 0 =  Go < G1 < . . .  < G~ < . . .  
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of subgroups of G such that 

(i)  G ,  = G; 
(ii) for each v < Ir G~ has rank < ~;; 

(iii) for each v < ir G,  is separative in G; 

(iv) for each v < Ir Gv+l/Gv is torsion-free of rank 1. 

Proof." The claim is obvious whenever ~r is finite or eountably infinite. For 

~; = R1, this follows simply from (2.5). For ir > R1, we infer from the preceding 

lemma that there exists a chain like (4) where the groups are B~176 of G 

and the factors are of ranks _< R1. We can refine this chain by inserting between 

each consecutive term a chain of pure subgroups such that all the factors of this 

chain will be of rank 1. An appeal to (2.5) completes the proof. | 

The last result leads us at once to a proof of Theorem II: 

THEOREM 4.3 (V = L): Bext2(G, T) = 0 holds for aJl torsion-free groups O and 

torsion groups T. 

Proof." If G admits a chain as stated in (4.2), then it satisfies the hypotheses of 

[1, Thin 6.3]. Hence the claim follows from the cited result. | 

Obviously, the following corollary is equivalent to (4.3): 

COROLLARY 4.4: In L, balanced subgroups of Bl-groups, in particular, balanced 

subgroups of completely decomposable groups are Bl-groups. 

5. A x i o m - 3  famil ies  o f  s e p a r a t i v e  subgroups 

Let P be a property of subgroups. A group G is said to satisfy the 3 rd  A x i o m  

of  C o u n t a b i l i t y  for subgroups of property P if there is a family C of subgroups 

of G with property P (called an A x i o m - 3  family)  such that (i) 0, G E C; (ii) if 

{Hi[ i E I} is a subset of C, then the subgroup generated by {Hill E I} belongs 

to C; (iii) if H E C and X is a countable subset of G, then there is a K E C 

containing both H and X such that K/H is countable. 

The idea of building an Axiom-3 family from a chain with countable factors, 

due to Hill [13], can be utilized for separative subgroups. In fact, from (4.2) a 

stronger assertion can be derived: 

THEOREM 5.1: /_rl L, every torsion-free group admits an Axiom-3 family os sep- 

arative subgroups. 



252 L. FUCHS AND M. MAGIDOR Isr. J. Math. 

Proof: Let G be a torsion-free group of rank to. By (4.2), G is the union 

of a continuous well-ordered chain (4) of separative subgroups of ranks < ~; 

with rank one quotients G~+x/Gu. For each v < ~;, and for each coset g + G~ 

in Ca~+l, consider a countable set {g + an] n < w} with an �9 G~ such that  

{x(g + a-)l n < w} is cofinal in {x(g + a)t a �9 G~}. Let B,, denote the subgroup 

of G~+a which is generated by the pure subgroups (g + an).(n < w) for each 

coset g + Gv in Ca~+l. Thus B~ is a countable subgroup of Gv+l satisfying 

G~+I = G~ + B~. 

A subset S of ~ will be called d o s e d  if for each # in S we have 

G~, N B~ <_ (B~I v �9 S, v < #). 

Lemmas 5.5, 5.4 and 5.6 in [1] show respectively that 

(1) the union of any number of closed subsets of n is closed, and 

(2) for a closed subset S of ~, the subgroup G(S) = (B,, I v E S) is pure in G. 

(3) Every countable subset F of ~ is contained in a countable closed subset. 

Let the family C consist of all subgroups of the form G(S) with S dosed in 

~. This C will be a desired family if we can verify that G(S) is separative in G 

provided that  S is closed in ,r 

Observe that  every g/6 0 in G defines an ordinal v(g) < ~ such that Gv(g)+l 

is the first member of (4) containing 0. Given g E G \ G(S), we have to find a 

countable coanal subset in the set {x(g + z)l z e G(S)}. We induct on v(g). 

To start the induction, let # be the smallest index such that  # ~ S; then 

G u < G(S). Let v(g) = #. There is a countable subset {x(g + an)l n < w} 

cofinal in {x(g + z)l z E G~,} where evidently an e G(S). We claim that  

{x(g + an)[ n < w} is cofinal in {x(g + z)l z �9 G(S)). Given z �9 G(S), we 

have to find an n < w such that x(g + x) < x(g + an). We use induction on 

v(x) = )~. If ;~ < #, we are done by the choice of the a,,. Note that  ~ = # is 

impossible. In fact, this would mean x = x0 + xa with z0 �9 ~ By (v < #) and 

0 ~ xl �9 ~ By (v > p), thus zl  = x - z0 �9 G#. If we write Zl = Yl + ' ' "  -J- Yk 

with ,~i = v(yi) �9 S and )~1 < "'" < ~k such that Ak is minimal, then from 

yk �9 Gxk f~ Bxk _< (B~I v �9 S, v < ,~k) we derive a contradiction. Finally, let 

,~ > p; then necessarily )~ �9 S. Hence there is a b m � 9  Gx such that  z +bm �9 Bx 

and x(g + z) <_ X(x + bra). Then x(g + z) _< x(g - bin). Here bm �9 Ca(S), 
v(bm) < ,~, so by induction hypothesis x(g - bin) <_ x(g + an) for some n. We 

obtain the desired x(g + x) < x(g + a.).  
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In the second step of our induction, we can assume that v(g) is minimal for 

the elements in the coset g + G(S). Then v(g) ~ S, since for the coset g + G~(g) 

we have selected a countable set {g + an[ n < w} and v(g) G S would imply that  

an was a representative of the same coset with a smaller v(an). By induction 

hypothesis, for each n < w, there is a countable coflnal set {x(an + ank)[ k < w} 

in {X(an + z)[ z E G(S)}. We intend to show that the set {x(g - ank)[ n, k < w} 

is cofinal in { x ( g + z ) l ,  ~ G(S)}. As above, we induct on v(x) = A. If A </~(g), 

then x(g + * )  -< x(g + an) for some n < ~; hence we have X(g + x) -< X(an - x). 

As X(an - x) <_ x(an + ank) for some k, we obtain X(g + ~) -< x(g - a,k). The 

proof above applies to show that A = p(g) is impossible. The case A > p(g) can 

be handled as above to complete the proof that the set {X(g - ank)[ n, k < w} is 

cofinal in {x(g + :~)1 * ~ G(S)}.  , 

6. S e p a r a t i v e  s u b g r o u p s  a n d  b a l a n c e d  extensions 

Equipped with the necessary information about chains of separative subgroups in 

torsion-free groups, we can turn our attention to Butler groups of large cardinal- 

ities. We concentrate on the relationship between B1- and B2-groups. Actually, 

we could stop right here and delegate the balance of the proof of Theorem I to 

[8]. Instead, we show how some arguments in [8] can be simplified or improved. 

Our discussion starts with a couple of preliminary lemmas. 

LEMMA 6.1: Let 0 ~ A ~ B --~ C --~ 0 be an exact sequence of torsion-flee 

groups, where A is separative in B and C is of rank 1. Then there is a balanced- 

exact sequence 

O--* K--* A ( ~ X  ~ B ~ O  

where X is completely decomposable of countable rank, and K is isomorphic to 

a pure subgroup o[X.  

Proofi For each coset b + A (b E B), pick a cofmal subset {x(b + a,,)[ n < w} 

(depending on b) in the set {x(b + a)[ a ~ A}, and let Xn be r~nk one groups 

with Zn E X ,  of characteristic x(b + an). Define X as the direct sum of all these 

countably many X,,, for all cosets and all n, and define ~o via ~o(a) = a for a E A, 

~o(z,) = b+an. Then ~o is surjective, since the characteristic of b+A is the union 

of the characteristics x(b + a , )  for n < ~o. 

Let 7/: d ~ B be a homomorphism with d a subgroup of Q. Ass-ruing 

1 E J ,  let ~/1 = b + a for some b E B \ A, a E A. Choose n such that  X(Zn) = 
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x(b + a , )  > x(b + a). Then x(a - a , )  > x(b + a), so the correspondence 1 ~-~ 

x .  + a - a .  extends to a homomorphism ~: J ~ A ~ X. This evidently satisfies 

From the exact sequence 0 ~ A N ~oX --* A ~ ~X  -~ B ---* 0 we derive that  

K is the inverse image of the pure subgroup A N ~ X  of ~oX under ~. Hence K 

is as stated. II 

The real significance of separative subgroups is that it renders possible the 

verification of the next lemma which is crucial in the proof of (6.3). 

LEMMA 6.2: Suppose 0 ~ T ~ G --* A ~ 0 is a balanced-exact sequence 

where T is a torsion group and A is a separative subgroup in a torsion-free group 

B with C = B / A  of  rank 1. Then there erSsts a commutative diagram with 

0 , T  , G  . A  , 0  

0 , T ,  . H  , B  , 0 .  

ba/anced-exact rows 

Proos Choose a balance&exact sequence 0 ~ K ~ A $ X ~ B ---* 0 as 

indicated in (6.1). This induces an exact sequence 

Bext x (B, T) ~ Bext 1 (A $ X, T) = Bext 1 (A, T) ~ Bext 1 (K, T). 

The last Bext vanishes in view of (6.1), since pure subgroups of countable com- 

pletely decomposable groups are Butler groups (see e.g. [5]). Hence every bal- 

anced extension of T by A $ X,  in particular, the extension 0 --* T --~ G ~ X --* 

A $ X --* 0, is induced by a balanced extension of T by B. In other words, there 

is a commutative diagram 

0 , T �9 G ~ X  , A ~ X  , 0 

II 1 1 
0 , T  . H  . B  . 0  

with balanced-exact bot tom row. Dropping the X's ,  we get a diagram as desired. 

| 

We can now apply the results to Butler groups. 
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THEOREM 6.3: Assume V = L. A Bl-group G of any carclinality ~ admits a 

continuous weB-ordered ascending chain 

(5) 0 = G o  <G1  < - - "  < G v  < ' "  (v < to) 

of pure subgroups such that 

(i) U . < .  G. = G; 

(ii) each G~ is separative in G; 

(iii) each G~ has cardinality < ~; 

(iv) G~+x/G, is of rank 1 for each v < r; 

(v) /'or every v < ~, G~ is a Bl-group. 

Proof: In view of (4.2), all what we have to verify is that the groups in the 

chain (4) are Ba-groups whenever a is a Bl-group. Because of (6.2), a balanced- 

e x a c t  sequence 0 ~ T ~ H~ ~ Gv ~ 0 with T torsion can be embedded in a 

commutative diagram 

0 . T  . H ~  , G ~  . 0  

0 , T , H , , + I  " G, ,+I  �9 0 

with balanced-exact bottom row. Since the images of the mappings G~ ~ Gv+l 

are pure subgroups, the direct limit 0 --* T ~ H ~ G ~ 0 of the balanced-exact 

sequences 0 -* T ~ H ,  ~ G~ --* 0 is easily seen to be again balanced-exact. In 

this way, we obtain a commutative diagram like (6) with the bottom sequence 

replaced by the direc*~ limit. If G is a Bl-group, then the direct limit splits, and 

therefore so does the top sequence. Hence G~ is likewise a Bl-group. | 

Note that  the proof shows that if G~ is a Bl-group, then any chain (4) 

satisfying (i)-(iv) also satisfies (v). 

7 .  Ba-Groups  

A subgroup A of a group G with G/A torsion-free is called p r e b a l a n c e d  if the 

following condition is satisfied: for every rank one (pure) subgroup C/A of G/A, 

there exists a Butler subgroup B of finite rank in C such that  C = A + B. (For 

homologieal properties of prebalaneedness, we refer to Fuchs-Metelli [12].) The 

subgroup A is decen t  in G if the same holds for all finite rank pure subgroups 

C/A of G/A; see Albrecht-HiU [1]. 
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We shall need the equivalence of Bz-groups and Bs-groups, as asserted in 

Albrecht-HiU [1]. Since the proof of their Lemma 5.7 was based on the incorrect 

claim that every countable set of ordinals can be arranged in an ascending chain 

of type to (to + to is a counterexample), we cannot rely on the proof in [1]. Here 

we shall prove a somewhat more general statement. 

Define a subgroup H of G to have p r o p e r t y  P if it is a pure subgroup 

of G, and for each pure subgroup K of G which contains H as a finite eorank 

subgroup, K = H + B holds for some finite rank subgroup B of G. 

THEOREM 7.1: If G is the union of a continuous we//-ordered ascending chain 

of pure subgroups, 0 = H0 < / / 1  < ".. < H~ < . . .  (v < p), such that for each 

+ 1 < #, Hv+l = Hv + By with a finite rank subgroup By, then G satisfies the 

3rd axiom of countability for subgroups of property P. 

Proof." A subset S of p wiU be called closed if for each A in S we have Hx N Bx _< 

(By[ v E S, v < A). We have (1) and (2) as in the proof of (5.1), but (3) should 

be replaced by the stronger claim: 

(3 I) Every finite subset F of p is contained in a finite closed subset. 

We prove this by induction on the maximal member of the finite set F.  If 

this maximum is 0, then F = {0} is trivially closed. Let )~ > 0 be the largest 

ordinal in F ,  and assume the claim true for finite subsets C A. In view of (1), it is 

enough to show that  {A} is contained in a finite dosed subset. As the subgroup 

Hx N Bx is of finite rank, it contains a finite maximal family of independent 

dements xx,.. . ,zk. The zi 's are all in Hx, so we can find a finite subset S ~ of 

A, such that  zi is in G(S ~) for i < k. By induction hypothesis we can assume 

S ~ closed. (There is no loss of generality in assuming that this finite set is still 

included in A, because it follows easily from the definition of dosed sets that  

S f3 )~ is dosed for every A whenever S is dosed.) We claim that  S = S I O {A} is 

dosed, and hence it is the required finite dosed set. As S ~ is dosed, it is enough 

to check the definition only for A. By (2), G(S') is a pure subgroup of G, hence 

it contains Hx n Bx. We are done with the proof of claim (3~). 

(4) For any closed subset S of p, the subgroup G(S) has property P. 

Let K be a pure subgroup of G that contains G(S) such that  K/G(S) 

is of finite rank. Then there is a finite subset {zl, . . . ,xk} in K such that 

(G(S) ,z l , . . . ,xk)  is an essential subgroup of K.  By (3 ~) we can find a finite 

dosed subset T of p satisfying {z~,...,xk} C G(T). Then as a pure subgroup, 
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G(S O T) = G(S) + G(T) contains K, and therefore K = G(S) + (K N G(T)) 

holds where the second subgroup is evidently of finite rank. 

Define the family C to consist of all subgroups of G that are of the form 

G(S) with S a closed subset of/z. Then the members of C have property P, while 

properties (i)-(iii) of families with 3rd axiom of countability are readily checked. 

I 

Applying (7.1) to the case in which the finite rank subgroups B,  in the 

definition of property P are Butler groups (i.e. property P means being decent 

in G), we are led to the desired conclusion: 

THEOREM 7.2: A torsion-free group is a B2-group if and only if it is a Ba-group. 

I 

From the definition it is straightforward to verify that B3-groups are finitely 

Butler in the sense that all of their pure subgroups of finite rank are Butler. Hence 

B2-groups are finitely Butler. 

Before stating the following corollary, we remind the reader of a definition. 

For an infinite cardinal r, by a G(~)-family in the group G is meant a collection 

C of subgroups of G such that (i) 0, G E C; (ii) C is closed under unions of chains; 

(iii) if A E C and X is any subset of G of cardinality _< ~;, then there is a B E C 

that contains both A and X, and satisfies ]B/A] < ~. Manifestly, every Axiom-3 

family is a G(R0)-family. 

COROLLARY 7.3 (CH): Every B2-group admits a G(R1)-family of balanced sub- 

groups. 

Proof." Let G be a B2-group, and C a G(R0)-family of decent subgroups. Let B 

denote the subset {B E C[ B is balanced in G}. 

To verify (ii) for B, in view of (2.2) it suffices to show that the union B of 

a countable ascending chain of balanced subgroups B~ (n < w) is again balanced 

in G whenever B is prebalanced in G. Let E be a pure subgroup of G such that 

B < E <_ G and E / B  is of rank 1. On account of prebalancedness, E = B+~f~Ei 

holds for subgroups Ei of rank 1 (i = 1 , . . . ,  k). Write Ei = (e + hi). for some 

e E E and bi E B; then bl , . . . ,bk E Bm for some index m. Clearly, B,~ is 

balanced of corank 1 in B ~ = B,~ + ~ E i ,  thus B ~ = B,~ • X for a rank 1 

group X = (e + b). for a suitable b E Bin. But then E = B @ X establishes the 

balancedness of B in G. 
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To check (iii), let B E B be a balanced subgroup and X a subgroup of car- 

dinality _< R1. By (2.3), there is a balanced subgroup G / B  of G / B  of cardinality 

_< R1 containing ( X  + B ) / B .  A routine back-and-forth argument convinces us 

that  C can be chosen so as to belong to C. C is balanced in G, so C E B. | 

8. R e g u l a r  ca rd ina l s  

We need some more preparatory results to prove that Bl-groups of arbitrary 

cardinality are B2-groups. First, we deal with the case of regular cardinals. The 

key lemma is a version of a lemma by Eldof-Fuchs [10], due to Dugas-HiU- 

Rangaswamy [8]. Recall that  a pure subgroup A of a torsion-free group G is said 

to be a TEP-subgroup, or to have TEP in G (Torsion Extension Property), if 

every homomorphism A ~ T (T any torsion group) extends to a homomorphism 

G ~ T .  

LEMMA 8.1: Let tr be an uncountable regular cardinal, and O = Ao < A1 < . . .  < 

A,, < . . .  (v < to) a continuous well-ordered ascending chain of pure subgroups of 

a torsion-free group A such that 

(a) A .  = A; 
(b) Ia.I < ~ for all v < ir 

(c) for each v < t~, A ,  is a Bl-group. 

If  A is a Bl-group, then the set 

E = {v < t~[ qp > v such that A ,  is not a TEP-subgroup in A~,} 

is not stationary in ~. | 

We require a generalization of a crucial lemma by Dugas-Rangaswamy [7]. 

The proof of (2.2) in Fuchs-Metelli [12] furnishes us with what we need here: 

LEMMA 8.2: Let G be a Bl-group and A a separative subgroup of finite corank 

in G. A has TEP in G if  and only i f  G = A + B for a finite rank Butler group 

B,  i.e. A is decent in G. 

We can now prove: 

THEOREM 8.3 (V = L): Suppose the cardinality tr of the torsion-freegroup G is 

an uncountable regular cardinal. If G is a Bl-group, then it admits a continuous 

well-ordered ascending chain of pure subgroups, 0 = Ao < A1 < . "  < A~ < . . .  

(a < ~), such that 
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(i) U o < .  a ~  = G; 
(ii) IA~I < 6 for all a < 6; 

(iii) each Aa is a prebalanced subgroup in G; 

(iv) both A~ and A~+I/A~ are Bl-groups for each a < 6. 

Proof." In view of (6.3), G has a continuous well-ordered ascending chain of 

separative, Bl-subgroups A,~ satisfying (i) and (ii). Moreover, (8.1) guarantees 

that, by dropping to a suitable cub of indices in 6 if necessary, we can assume 

that the subgroups A,, in the chain are TEP-subgroups of G. 

In order to show that in the arising chain, each A,~ is prebalanced in A, 

choose any pure subgroup A'~ of G that contains A~ with A~/A~, of rank 1. 

Without loss of generality A~ may be assumed to be one of the subgroups G~, 

in the chain (5). This chain can be modified by replacing G~+I by A'~ and 

every Gx+l (A >/~) by the purification of Gx + A'~. These subgroups are again 

separative in G, thus (6.3) (in particular, the remark following (6.3)) ensures that 

A'~ is a B~-group. (8.2) implies the prebaiancedness of A,, in A'~, and hence - -  

since A~ was arbitrary - -  in G. This establishes (iii). 

Applying Proposition 2.1 in Fuchs-Metelli [12] to the prebalanced-exact 

sequence 0 ---, A~, ---, A~+I ~ A~,+I/A,, ~ 0, from the TEP-property of A~, in 

A~+I we derive that A~+I/A~ is a Bl-group. Hence (iv) holds. 1 

9. Singular cardinals 

We now turn our attention to the singular cardinal case. Shelah's Singular Com- 

pactness Theorem will be applied in the form phrased by Hodges [14]. This yields 

a more direct approach than the method employed by Dugas-Hill-Rangaswamy 

[8] in that it applies to the group itself rather than to a balanced-projective 

resolution of the group. 

THEOREM 9.1: Let G be a torsion-free group whose cardinality is a singular 

cardinal A. If every balanced subgroup of G whose cardinality is < A is a Bs- 

group, then G itself is a Bs-group. 

Proof: Hodges' theorem [14, Than 5] states that if his Axioms I-V (see below) 

hold for a set G and a cardinal A' < A = IGI, A a singular cardinal, and if for 

every cardinal 6 in some sets of cardinals with supremum )~, Player I has no 

winning strategy in the 6+-Kueker game on G, then G is '~ee". 
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Thus we are given an arbitrary set G (whose cardinality A is a singular 

cardinal) along with a family S(G) of subsets of G; these subsets are called 

subalgebras of G. In our case, G will be a torsion-free group of cardinality A, 

and S(G) the collection of all subgroups of G. We also have to choose an infinite 

cardinal 2~' < A; our choice is ~' = R0. 

Moreover, we need a distinguished collection of subalgebras B called "free 

subalgebras" such that each of them has at least one basis, i.e. a certain collection 

of subalgebras in B. In our case, a subgroup B of G is "free" if it is a Bs- 

group and a "basis" for B will be an Axiom-3 family of decent subgroups, say, 

Jr = {H~[ i E I } .  

Let us check if all the axioms in Hodges' paper [14] are satisfied. 

AxIoM I: S(G) is fully dosed unbounded. 

This means that  S(G) is closed under unions of ascending chains and that  

every subset B of G is contained in a member of S(G) whose cardinality is 

_< IBI + R0. An of this is obvious in our case since S(G) is the collection of all 

subgroups of G. 

AXIOM II: / f  2" is a basis of B, then 2- is a dosed unbounded collection of 

subalgebras of G included in B, fully dosed unbounded in B. 

This follows from the fact that 2- is a witness to B being a Bs-group. 

AXIOM III: I fJCisa basis for B, a n d i f C  E ~', then theset { D [ D  E ~', D < C} 

is a basis for C. 

This is clear, since subgroups of C decent in B are decent in C. 

AXIOM IV: //" C is a member of some basis 2- for B, and if 2-' is a basis for C, 

then there is a basis for B, whose restriction to C is 2-'. 

If in 2- we replace the set { D [ D  E 2-,D subset of C} by 2-', then we get a 

required basis of B, since decency is a transitive property. 

AXIOM V: Suppose we are given a continuous well-ordered ascending chain of 

subalgebras o[ G, {Bvl v < ~), along with a chain o[ bases, {2-vl v < ~}, such 

that 2-~ is a basis for B~ and if v < t~ < ~, then 2-, restricted to B~ is 2-~ (in 

particular B ,  is in 2-~,). Then the union B = U{B.I v < ,~) has  a basis consisting 

of unions of chains of the form U{/-/v[ v < to} where t t ,  E 2-. for v < t~. 
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Define Y" = U(~~l  ~, < ,~}. An what we have to verify is that, for v < ~, 

each Hv E ~'v is decent in B. Let K be any pure subgroup of B containing 

~ such that K/Hv is of finite rank; then there is a p < tc (z/ < p) such that 

K < B~,. Hv being decent in B~, we have K -- H~ -t- K t for a finite rank Butler 

subgroup K ~, proving that Hv is decent in B as well. 

Let tc < ~ be a regular cardinal. Recall that by a tc-Kueker game on G is 

meant the following game between two players. Players I and II choose alternately 

subgroups Ba of G (to form a continuous well-ordered ascending chain) such that 

(1) each Ba is of cardinality < ~, (2) for each a, Ba+l contains Ba, and (3) at 

limit ordinals a Player I ought to choose B~ = U#<a B#. Player II wins if and 

only if the subgroup B~ -- Ua<~ B~ is free. 

In order to apply Hodges' theorem we need to show that there are arbitrarily 

large cardinals ~ < A such that "Player I has no winning strategy" in the ~+- 

Kueker game on G. We can even show that "Player II has a winning strategy". 

Assume that ~ is any uncountable cardinal < A. In order to win in the ~+- 

Kueker game on G, at his turn Player II plays by picking a balanced subgroup of 

G of cardinality ~ that contains the previous subgroup played by Player I. Since 

s+ is uncountable, the final union is balanced in G, and has cardinality < A. By 

assumption, it is a Bs-group. In other words, Player II is guaranteed a victory. 

This completes the proof that G is likewise a Bs-group. | 

10. P r o o f  of  Theorem I 

We are now in the possession of all the ingredients needed to finish the proof of 

our main result: 

THEOREM 10.1: Assuming V = L, Bl-groups of any cardinality are B2-groups. 

Proof: By induction on the cardinality ~ of the Bl-group. For ~ = R0, this 

has been proved by Bican-Salce [5]; for a short proof see Fuchs-Metelli [12]. Let 

> R0 and assume the claim has been verified for torsion-free groups of smaller 

cardinalities. 

CASE 1: ~ is a regu/ar card, ha/. A Bl-group G of cardinRllty ~ has a chain 

0 = A0 < A1 < ""  < Aa < . . .  (a < Ir with properties (i)-(iv) listed in (8.3). 

By induction hypothesis, each Aa+l/Ao is a B2-group, hence it has a continuous 

well-ordered ascending chain of prebalanced subgroups with rank 1 factors. The 

prebalanced subgroups C/Aa of Aa+l/A~ lift to prebalanced subgroups C of G 
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(cf. Fuchs--Metelli [12]) to form a chain of prebalanced subgroups between Aa 

and Aa+l. All the arising chains put together will yield a chain of prebalanced 

subgroups with rank 1 factors for the group G. Consequently, G is a B2-group. 

CASE 2: ~ is a s/ngu/ar cardinal. Let G be a Bl-group of cardinality ~. Because 

of (4.5), all the balanced subgroups of G are Bl-groups. By induction hypothesis, 

the balanced subgroups of cardinalities < tr are B2-groups, and thus by (7.2) they 

are B3-groups. A simple appeal to (9.1) completes the proof that G is a B3-group. 
| 
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